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Step 1

Part a: Lewis algorithm based European option pricing with calibrated Heston model
for 15D to expire

We observe the 15D-to-expire European options market as below

DaysToMaturity Strike CALL PUT T r

15 2275 10.52 432 0.06 0.015
15 230  10.05 5.2 0.06 0.015
15 2325 7.75 645 0.06 0.015
15 235 6.01 7.56 0.06 0.015
15 2375 4.75 878 0.06 0.015

Note, we convert “DaysToMaturity” to annualised expiry “T” via dividing with 250 business-days as the dates in
the data original are labelled with days not date. Typical tenor annualisation should refer to the market convention,
for instance the European rates market follows 30/360 rule where one should divide the number of days by 360
instead of 365 and 365 for americans. That counting also requires the holiday calendar to extract actual business
days. Therefore, the 250 BDs per annum convention is the only applicable unit applicable here.

To price with the fitted Heston model, we calibrate the Heston model with below configuration:

Pricing method: Lewis method that numerically integrates the characterisfic function of the Heston process
with CALL-PUT price parity to calculate PUT price from the CALL price via P=C — SO+ K -e "7
Target option type: European
Target option side: Each CALL and PUT
Price data points: Those at 15D days-to-maturity on the same side
Calibration objective: Minimise the Mean-Squared-Error (MSE - squared price unit) between the market and
model option prices
Calibration procedure:

1. Brute-forcing the heston parameters over a grid (via scipy.opt.brute),

2. Nelder-Mead (via scipy.opt.fmin) from the optimal brute-force result upto error convergence or max

iteration

The separation of the CALL and PUT as separate model targets to calibrate is to adopt the option market smirk as
shown in the data.

As a result of calibration, we got



S0 T kappa theta sigma rho v0
232.9 0.015 4.00618e-08 0.124817 0.000100004 0.614373 0.103351
for the CALL options with MSE at 0.378 price mark squared, and
S0 T kappa theta sigma rho v0
232.9 0.015 3.96864e-07 0.097427 0.000278084 -0.174123 0.0846418

for the PUT options with MSE at 0.035 mark.

Below are the model estimated option price versus the market price.
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Part b: Carr-Madan algorithm based European option pricing with calibrated Heston
model for 15D to expire

The practice here does not differ any from the part a’s, except the option price calculation logic adopt the Carr-
Madan’s method to integrate over the characteristic function of the Heston dynamics instead of Lewis’s. If the price

outputs from this method aligns with the outputs in the part a’s, then we can indirectly cross-check the EUR option
pricing validity.

CALL side calibration result with MRE 0.378:

S0 r kappa theta sigma rho v0
232.9 0.015 4.00806e-08 0.124816 0.000100027 0.614291 0.10335

PUT side calibration result with MRE 0.035:

S0 r kappa theta sigma rho v0
232.9 0.015 5.85713e-08 0.08543 0.000100037 0.240845 0.084424




We can observe the MREs as well as the calibrated parameters assimilate to the ones we saw in the part except p on
the PUT side where the sign has flipped.
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(Full-calib) PUT at Maturity 15
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part c: Asian CALL options pricing via calibrated Heston model with Lewis pricing

algorithm

We sampled paths with below formula - underlying as the integral form to apply the volatility adjustment effect on

drift for log-return process, and naive Euler-Maruyama scheme for the variance process:

Xirar =X -exp [(r = 0.50)t + AW

Verar = v+ k- (0 — v)dt + o /i AW

where d < W W@ > = p-dt

Euler-Maruyama scheme is a naive implementation of the SDE form of the process, which is still applicable for the
variance process as it is not the logreturn process which requires the drift adjustment.

From the calibrated Heston model (on CALL side) achieved in the part a, we run a monte-carlo simulation of 20
steps (= number of days to expire) over 10000 paths as shown below.
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The resultant Asian CALL option price around the ATM (moneyness 0.95, 0.98, 1.0, 1.02, 1.05) is a shown below
with 4% charged offer price on top of the fair price:

Moneyness Fair price Our Offer

0.95 12.844958001020133 13.3587563211
0.98  7.590076359084218  7.89367941345

1.0 4.91738550647796  5.1140809257
1.02  2.963940058821264  3.08249766117
1.05  1.209679455108908 1.25806663331

Step2

part a: European option pricing with calibrated Bates model for 60D to expire with
Lewis method

We observe the 60D-to-expire European options market as below

DaysToMaturity —Strike CALL PUT T T

60 2275 16.78 11.03 0.164384 0.015
60 230  17.65 12.15 0.164384 0.015
60 2325 16.86 13.37 0.164384 0.015
60 235 16.05 14.75 0.164384 0.015
60 2375 15.1 15.62 0.164384 0.015




Below is the calibration procedure used in this pricing practice:

¢ Pricing method: Lewis method with CALL-PUT price parity

o Target option type: European
o Target option side: Each CALL and PUT

o Price data points: Those at 60D days-to-maturity on the same side
« Calibration objective: Minimise the Mean-Squared-Error (MSE - squared price unit) between the market and
model option prices. Parameters space grid brute-forcing and then simplex downhill from the lowest point

from the grid.
o Calibration procedure:

1. Calibrate the Heston parameters using the Lewis pricing algorithm for the Heston dynamics model.

2. Calibrate the jump parameters using the Lewis pricing algorithm for the Bates dynamics. Variables to
calibrate are the ones in the Merton model except the noise diffusion parameter as the drift is governed
under the Heston dynamics. Heston parameters are given from the previous step.

3. Calibrate the whole parameters (Heston + Merton jump only) with the simplex downhill from the

parameters point fitted in the last two steps

As a result of calibration, we got

S0 r lambd mu delta kappa theta sigma rho v0
232.9 0.015 0.514295 - 0.99054 1.9766e-08 0.277956  0.000104824 - 0.0153145
8.83544e- 0.0184529
13
for the CALL options with MSE at 0.349 price mark squared, and
S0 r lambd mu delta kappa theta sigma, rho v0
232.9 0.015 1.65191 - 0.396551 2.84644e- 0.176102 0.000100126  0.70556  0.0242659
0.112154 08

for the PUT options with MSE at 0.032 mark.

This is a few percent improvement on the MSE upto 10%, not game-changingly significant but still not ignorably
marginal. The big difference in the calibrated parameters are from A, u,d where the PUT’s model assume more
frequent, weaker jumps with higher shift moderation and by p being significanly positive the dynamics shall exploit
longer self-excitation regime as positive variance couples with positive noise multiplier. With the extremely low x,

the window of self-excitation shall rule for long period of time as decay doesn’t almost occur.

This presents the semantics of the option smirk that the PUT prices are relatively lower than that of CALL at the
same distance from the ATM: PUT dynamics assume higher underlying price hence price less. Below are the model
estimated option price versus the market price. The calibration quality is not satisfying to be fair, but we have
kink in the market price in the data where the stochastic process (at least those we have discussed) do not have
good properties to calibrate agains, and taming the multi-dimensional fitting is a realm of art with good search grid
apriori is required where we did not have a good luck in limited time of this study.
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part b: European option pricing with calibrated Bates model for 60D to expire with
Carr-Madan method

The procedure is the same as that of part a, but the option pricing algorithm is Carr-Madan’s method instead of
Lewis’s method offering the faster calculation speed of the option price via the Fourier-Transform inversion of the
option price’s characteristic function.

As a result of calibration, we got

S0 r lambd mu delta kappa theta sigma rho v0
232.9 0.015 0.514295 - 0.99054 1.9766e-08 0.277956  0.000104824 - 0.0153145
8.83544e- 0.0184529
13

for the CALL options with MSE at 0.349 price mark squared, and



S0 r lambd mu delta kappa theta sigma rho v0

232.9 0.015 1.65191 - 0.396551 2.84644e- 0.176102 0.000100126  0.70556  0.0242659
0.112154 08

for the PUT options with MSE at 0.032 mark.

Carr-Madan based pricing does not compromise with the optimal MSE, in fact the result for the PUT calibration
is exactly the same as the Lewis’s. It did not shorten the computational time than that of Lewis’ considering the
amount of optimisation iteration though, which is quite expected as we only deal with a single cash flow product
hence the vectorisation property of the FFT doesn’t add up any.

Below are the model estimated option price versus the market price.

(Full-calib) CALL at Maturity 60

20 4
— market

19 1 ® model
18 -
17
16

option values

15 -
14 -
13 -

T T T T T
226 228 230 232 234 236 238 240
Strike

0.75

0.50

0.25 ~

0.00

difference

[
=

—0.50 4

—0.75 4

T T T T T T T
226 228 230 232 234 236 238 240
Strike



(Full-calib) PUT at Maturity 60

=
oo
1

—— market
® model

= = =
%] +a =2}
| i |

option values

—
o
]

T T T T T T T
226 228 230 232 234 236 238 240
Strike

0.2 1
0.1 _ i
0.0

_0.1 -

difference

_'0‘.2 -

T T T T T T T
226 228 230 232 234 236 238 240
Strike

part c: pricing Asian PUT (95% OTM) at 70D to expire with calibrated Bates

Extending the Heston dynamics sampler in section 1.c with the jump diffusion, we sample the Bates dynamics as
below:

Xipar = Xy -exp [(7” —r; — 0.51) At + \/ZTtAWt(l):| (1 + (exp[p+0d- 2] —1)- AJy)

Vienr =V + K- (0 — vy)dt + a\/ITtAWt(z)
where d < W W >,= p.dt, 2~ N(0,12), dJ = P(\dt)
Note that we multiply “1 + JumpDiffusion” part to the Heston model part instead of adding “JumpDiffusion” term.

We found this is the correct derivation that also well explains the fact that the characteristic function of the Bates’
model is the multiplication the Heston and JumpDiffusion process’s.

From the calibrated Bates model (on PUT side) achieved in the part a and b (almost same), we run a monte-carlo
simulation of 70 steps (= number of days to expire) over 10000 paths as shown below.
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The resultant Asian PUT option price at the 95% moneyness (K=221.255) is 14.49, and the 4% spread marks our
offer as 15.07.

The sample paths are largely driven by the jumps on both ways with must bigger size of the jump diffusion than the
stochastic volatility diffusion where the final variance stays around the initial variance value. This is what we expect
from the calibrated parameters as small x, o for volatility barely shifts the variance whilst large jump parameters
facilitates the big frequent jumps yet the distribution of the jump size is balanced to open for both signs, ended up
having fat tails around zero log return.

Step3

part a. Euribor term structure by calibrated CIR short-rate process based on cubic-
spline forward rate curve

The CIR short-rate process is defined as below SDE form by which we can sample with Euler-Maruyama method:

dXt = 5(9 — Xt)dt + O'th

Considering the CIR dynamics as the short-rate process of the forward rate - given that the Vasicek defines the
short-rate as By = By exp( fot Xdt) - the calibration procedure of the dynamics is as follows:

o Prepare the yield-to-maturity data from the rate points data ¢, = log(1 4+t *r)/t

o Fit the differentiable non/semi parametric curve estimation model ¢; ~ M (t) such as the cubic spline or the
Nelson-Siegel-Svenson model

o Convert the rates into the forward rates data via fr = Mt =T)+ T - d]\gt(t) le=7




e Set the initial term-structure point rg which typically is set with the overnight funding rate: when no data is
available one can get from the spline curve’s estimation, although in WQU instruction any nearest tenor was

chosen.

e With the estimated initial forward rate fy over the tenor space, calibrate the CIR parameters k., 0, o:

1. Calculate the forward rate at t given the current CIR parameters:

4g° exp[gt]

ft = kb

2g9+(k+g) exp[gt]—1

"0 595 (rtg) (explot

EE where g = VK2 + 202

explg-t]—1

+

2. Measure the MSE between the CIR expected rates and the forward rates from the data

3. Apply the MSE minimiser that searches the CIR parameter values with the MSE of the objective and
iterates the above steps towards convergence or stopping criterion. We use the Nelder-Mead simplex

downhill method as the optimiser for this practice.

We are given the Euribor marks as below:

Maturity r
0.02  0.00648
0.0833333 0.00679
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and the calibrate parameters set becomes:
x0 kappa_cir theta_cir sigma, cir
0.00663015 0.68804  0.109374 0.00100031

with the MSE 5.26e-6.



CIR model calibration
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The CIR overestimates the front end, underestimates the middle end, and overestimates the far end. This is a well
known limitation of the CIR model for the term structure, which is often exploited by the butterfly trades targeting
on less sophisticated market makers.

part b. Sample CIR short-rate process for 12 months and Option pricing on BCC
dynamics

i, ii) Expected rate and the confidence bound at 1-year

Below is the 10000 paths sampled result from the calibrated CIR short-rate dynamics in the part a.
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Although small and retained, the short-rate varies more on the farther tenor. The final forward rate distribution at
12 months shapes in normal distribution as indicated by the SDE.

5% to 95% percentile confidence bound is found to be (5.75%, 5.79%) at 12-months tenor. The expected value,
which is the average of the paths, is at 5.8%.



iii) Impact of the term structure model on the option pricing output at 1-year expiry

In order to understand the impact of the term-structure aware underlying dynamics and its impact on the resultant
option price, we focus on the Bates and the BCC dynamics on the 1 year European and Asian put options evaluation

via Monte-Carlo sampling methods.

Extending the Bates model with the term-structure on the risk-free rate - CIR model is chosen as the short-rate

dynamics in this study:

Xiyar = Xt - exp [(rt —r; — 0.50) At + \/ITtAWt(l) (14 (exp[pp+0-2z) — 1) - AJy)
Tt+At = Tt + K- (Qr - Tt)dt + O'T\/EAW(T)

Viear =i+ K- (0, —v)dt + JV\/ZAWt(Z)
where d < WO W® >,= p.dt, z~ N(0,12), dJ = P(Adt)

The Fourier-Transformation-Inversion based calibration of the BCC model is similar to that of the Bates, except
that the rate is given from the term-structure model at the expiry date. The monte-carlo sampling is also similar to
that of the Bates’, except that the rate per each timestep is given from the CIR short-rate dynamics.

The Bates dynamics with the fixed risk-free rate from the overnight rate under assumption that the overnight rate

keeps at the same level for the next 1-year so that we can carry at the same fuding rate.

On the other hand, the BCC dynamics are with the dynamic yield-to-maturity throughout the time preriod of
sampling that comes from the calibrated CIR dynamics (in Step3-partA). This means in typical condition, the
funding rate is higher than that of the Bates’ and that is the case in this study as well.

To generalise over the maturity as to sample farther side, we calibrate the BCC dynamics parameters with market
price data on 120D maturity date within 98% - 102% moneyness as shown below:

DaysToMaturity Strike CALL PUT T r

120 230 24.12 16.25 0.48 0.021873

120 232.5 22.97 17.22 0.48 0.021873

120 235 21.75 18.74 0.48 0.021873

120 2375 18.06 19.73 0.48 0.021873

which gives

x0 r lambd__merton mu__merton delta__merton kappa_ heston
232.9 0.00661528 1.22788 -0.123941 0.365767 0.00059762
theta heston sigma,__heston rho heston v0_heston kappa_ cir theta cir sigma_ cir
0.153026 0.0135242 -0.012751 0.0252505 0.697536 0.106926 0.00100215

for the PUT side dynamics with MSE 0.016.
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This level of MSE from this BCC model is promisingly low.

The 1-year option price in the same Lewis method to the Bates’ in as shown below:

otype oside moneyness calculator price
european put 95% Bates 102.9342
european put 95% BCC 79.9749
asian put 95% Bates 53.9532
asian put 95% BCC 40.3559

, which are much lower than that of the Bates’ returns discussed earlier. We suspect it is due to the higher level of
the risk-free rate we apply for the BCC model than the Bates model’s for why we provide the overnight rate for the
all sampling timesteps. Although the direct comparison is not quantitatively meaningful (as their payoff distribution
must be different), but what is certain is that the BCC discounts much more.

For sake of the Asian PUT 1Y pricing as well as qualitative observation of the paths, we sampled 10000 paths with
the calibrated parameters from the 120D near ATM price points, as metioned above. The fair price from the sample
mean is 49.572 from below paths:
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This result supports the original postulation that the option price sampled from the BCC with up-slope temr-structure
will be lower than that of the Bates - term-structure agonistic risk-free rate - with overnight rate is given as the
risk-free rate. One may get the different relationship when the risk-free rate is given as the 1-year yield instead
of the overnight, but the jury for the justful rate is still out anyway for selecting a single risk-free rate over the
maturity space.
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