
task4_durei

January 20, 2025

1 Task 4 by Durei
1.1 Empirical Analysis of ETFs
We consider Nasdaq-100 index ([^NDX](https://uk.finance.yahoo.com/quote/%5ENDX/)) to con-
duct this analysis via components. Nasdaq-100 ETF such as ^VOO is a type of funds that tracks
Nasdaq-100 index by holding the similar weight of stocks or other proxy ways.

[2]: import datetime as dt
from typing import Dict, List

import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import pandas as pd

import yfinance as yf

from plotly import express as px
from plotly import graph_objects as go
from plotly.subplots import make_subplots

1.2 4.a Find the 30 largest holdings.
Nasdaq provides the list of stock names of Nasdaq-100 each business day on their website. We start
from loading up the least of symbols of a day (2024/Jan/17).

[3]: # Symbol lists of the day sourced from the Nasdaq website, please refer to the␣
↪above link

ndx_syms_df = pd.read_csv('EODWeightings_20250117_NDX.csv')
ndx_syms

[4]: marketcap_syms = {}
for sym in ndx_syms_df['Security Symbol'].to_list():

Let's skip 'GOOG' as we have 'GOOGL' that does almost the same already␣
↪with voting rights.

if sym == 'GOOG':
continue

1

https://indexes.nasdaqomx.com/index/Weighting/NDX

_ticker = yf.Ticker(sym)
marketcap_syms[sym] = _ticker.info['marketCap']

marketcap_syms_df = pd.Series(marketcap_syms).to_frame('Cap')

[5]: N_top_syms = 30
top_N_df = marketcap_syms_df.sort_values('Cap', ascending=False).iloc[:

↪N_top_syms]
top_N_df

1.3 4.b Fetch at least 6 months of data (~ 120 data points).

[6]: d_start = dt.date(2024,7,17)
d_end = dt.date(2025,1,17)

df_daily_ohlc = yf.download(top_N_df.index.to_list(), start=d_start, end=d_end)
df_daily_ohlc.head(3)

[*********************100%***********************] 30 of 30 completed

[6]: Price Adj Close \
Ticker AAPL ADBE AMAT AMD
Date
2024-07-17 00:00:00+00:00 228.364136 563.090027 219.133743 159.429993
2024-07-18 00:00:00+00:00 223.674728 556.849976 216.724014 155.770004
2024-07-19 00:00:00+00:00 223.804428 551.000000 209.365463 151.580002

Price \
Ticker AMGN AMZN ARM ASML
Date
2024-07-17 00:00:00+00:00 330.704315 187.929993 161.699997 928.163513
2024-07-18 00:00:00+00:00 326.073822 183.750000 158.330002 920.286621
2024-07-19 00:00:00+00:00 326.389130 183.130005 163.399994 891.626892

Price … Volume \
Ticker AVGO AZN … MSFT NFLX
Date …
2024-07-17 00:00:00+00:00 155.053223 79.272766 … 21778000 4017300
2024-07-18 00:00:00+00:00 159.566238 77.583145 … 20794800 7575800
2024-07-19 00:00:00+00:00 156.415070 78.229179 … 20940400 9815600

Price \
Ticker NVDA PDD PEP PLTR QCOM
Date
2024-07-17 00:00:00+00:00 390086200 9823200 7671000 45203500 16156200
2024-07-18 00:00:00+00:00 320979500 5165200 6228600 76485600 9960600

2

2024-07-19 00:00:00+00:00 217223800 4888700 5332800 49581600 9195700

Price
Ticker TMUS TSLA TXN
Date
2024-07-17 00:00:00+00:00 5228500 115584800 7792500
2024-07-18 00:00:00+00:00 4236900 110869000 5497200
2024-07-19 00:00:00+00:00 2494900 87403900 4868000

[3 rows x 180 columns]

1.4 4.c Compute the daily returns.

[7]: # Adjust Close is the clean price column after the company stock events␣
↪adjusted to price - dividend payment, stock split, etc.

df_daily_px = df_daily_ohlc['Adj Close']

Prepare log and pct return - we are going to use log return for the rest of␣
↪analysis

df_daily_logr = np.log((df_daily_px / df_daily_px.shift(1, axis=0)).
↪dropna(axis=0))

df_daily_pctr = df_daily_px.pct_change().dropna(axis=0)

[8]: df_daily_logr.head().iloc[:3,:3]

[8]: Ticker AAPL ADBE AMAT
Date
2024-07-18 00:00:00+00:00 -0.020749 -0.011144 -0.011058
2024-07-19 00:00:00+00:00 0.000580 -0.010561 -0.034543
2024-07-22 00:00:00+00:00 -0.001561 0.006909 0.060932

[9]: df_daily_pctr.head().iloc[:3,:3]

[9]: Ticker AAPL ADBE AMAT
Date
2024-07-18 00:00:00+00:00 -0.020535 -0.011082 -0.010997
2024-07-19 00:00:00+00:00 0.000580 -0.010505 -0.033954
2024-07-22 00:00:00+00:00 -0.001560 0.006933 0.062827

1.5 4.d Compute the covariance matrix.

[10]: # Covariance
logr_cov = df_daily_logr.cov()
logr_cov.iloc[:3, :3]

3

[10]: Ticker AAPL ADBE AMAT
Ticker
AAPL 0.000175 0.000085 0.000130
ADBE 0.000085 0.000496 0.000215
AMAT 0.000130 0.000215 0.000896

[11]: # Std
logr_std = df_daily_logr.std(axis=0)
logr_std = logr_std.to_frame('std')
logr_std.head(3)

[11]: std
Ticker
AAPL 0.013239
ADBE 0.022265
AMAT 0.029940

[12]: # Correlation matrix
df_daily_logr.corr().iloc[:3,:3]

[12]: Ticker AAPL ADBE AMAT
Ticker
AAPL 1.00000 0.288680 0.328800
ADBE 0.28868 1.000000 0.321828
AMAT 0.32880 0.321828 1.000000

1.6 4.e Compute the PCA
We do PCA with with sklearn library in this analysis for simplicity of use, but statsmodels library
offers more comprehensive analysis service.

[13]: from sklearn import decomposition, preprocessing

[14]: # apply daily log-return timeseries to PCA
n_pcs = min(6, N_top_syms) # number of principal components to retain
pca = decomposition.PCA(n_components=n_pcs)

df_daily_logr_scaled = preprocessing.scale(df_daily_logr) # we 'standardise'␣
↪data (normalise each timeseries: mean to 0 & std to 1)

df_daily_logr_scaled = pd.DataFrame(df_daily_logr_scaled, columns =␣
↪df_daily_logr.columns, index= df_daily_logr.index)

_ = pca.fit(df_daily_logr_scaled)

[15]: principlecomponents_list = [f'PC{i}' for i in range(pca.n_components)] #␣
↪['PC0', 'PC1', ...]

domain_list = df_daily_logr.columns # ['AAPL', 'AMZN', ...]

4

https://scentellegher.github.io/machine-learning/2020/01/27/pca-loadings-sklearn.html
https://www.statsmodels.org/dev/examples/notebooks/generated/pca_fertility_factors.html

eigenvectors list as columns of dataframe
loadings = pd.DataFrame(pca.components_.T, columns=principlecomponents_list,␣

↪index=domain_list)
loadings.T.iloc[:3]

[15]: Ticker AAPL ADBE AMAT AMD AMGN AMZN ARM \
PC0 0.185745 0.152358 0.246796 0.225760 0.095505 0.232218 0.235337
PC1 0.029448 0.169563 -0.216957 -0.182720 0.139838 0.043447 -0.193125
PC2 0.186652 0.008961 0.098052 0.015097 0.176988 -0.091555 -0.008461

Ticker ASML AVGO AZN … MSFT NFLX NVDA \
PC0 0.208558 0.214172 0.054078 … 0.238074 0.190617 0.237118
PC1 -0.263556 -0.147598 0.008469 … 0.026057 0.122101 -0.135082
PC2 0.106610 -0.096821 0.559547 … 0.093960 -0.003714 -0.055299

Ticker PDD PEP PLTR QCOM TMUS TSLA TXN
PC0 0.049872 -0.014525 0.156484 0.246294 0.069734 0.185461 0.212282
PC1 -0.268362 0.327391 0.086289 -0.229051 0.365935 0.015428 -0.094917
PC2 0.103125 0.323107 -0.313966 0.007590 -0.126447 -0.286164 -0.004822

[3 rows x 30 columns]

One thing to remind, we can get the principal component vectors as dot product of the scaled data
with eigenvectors as discussed in M1-L4.

[16]: # eigenvalues-squared list as a diagonal matrix
factors = pd.DataFrame(np.diag(pca.explained_variance_),␣

↪columns=principlecomponents_list, index=principlecomponents_list)
factors

[16]: PC0 PC1 PC2 PC3 PC4 PC5
PC0 10.243207 0.000000 0.000000 0.00000 0.000000 0.000000
PC1 0.000000 2.450485 0.000000 0.00000 0.000000 0.000000
PC2 0.000000 0.000000 1.781195 0.00000 0.000000 0.000000
PC3 0.000000 0.000000 0.000000 1.74189 0.000000 0.000000
PC4 0.000000 0.000000 0.000000 0.00000 1.183618 0.000000
PC5 0.000000 0.000000 0.000000 0.00000 0.000000 1.116709

[17]: fig, axs = plt.subplots(1,2, figsize=(12, 5))

eigenvalues = np.diagonal(factors.pow(0.5).values)
_1 = pd.Series(eigenvalues, index=principlecomponents_list).plot(marker='.',␣

↪linestyle='--', ax=axs[0])
axs[0].set_xlabel('Principal components in descending order of eigenvalues')
axs[0].set_ylabel('Factors')
axs[0].set_title('Scree of eigenvalues')

5

Let's quickly call up the full rank PCA for the explained proportion plotting
pca_full = decomposition.PCA(n_components=N_top_syms)
_ = pca_full.fit_transform(df_daily_logr_scaled)
eigenvalues_full = np.sqrt(pca_full.explained_variance_)
_2 = pd.Series(eigenvalues/np.sum(eigenvalues_full)*100,␣

↪index=principlecomponents_list).plot(marker='.', linestyle='--', ax=axs[1])
axs[1].set_ylabel('Explained proportion (%)')

[17]: Text(0, 0.5, 'Explained proportion (%)')

[18]: px.bar(loadings, barmode='group', opacity=0.5).update_layout(
yaxis_title='Component value',
title='Eigenvectors as bar vectors over symbols',
width=1100, height=500

)

6

One observation in the above is that the first principle component (PC0) represents the level
shift (shift on the same direction throughout the entire symbols) is observed. This is a typical
phenomenon for panels with certain correlation bound by any synchronisation mechanism - such
as index investment of majority buy-sides - that rules the dynamics. This applies to not only stock
index but also fixed income yields.

[19]: # Covariance after PCA compressing rank down to 'n_components' as defined above
pca_cov = pd.DataFrame((loadings @ factors) @ loadings.T , columns=domain_list,␣

↪index=domain_list)
Covariance of original dataset
full_cov = pd.DataFrame(df_daily_logr_scaled, columns=domain_list).cov()

Post decomposition sanity check (or determining how much PCs to pick up with some quantitative
metric), we can measure the difference between the true covariance and PCA compressed covariance
as like below:

[20]: def get_l2_norm(vect):
return np.sqrt(vect.T @ vect)

def get_dotproduct(vect1, vect2):
return (vect1.T @ vect2) / (get_l2_norm(vect1) * get_l2_norm(vect2))

def get_dotproduct_angle(vect1, vect2):
return np.acos(max(min(1.0,get_dotproduct(vect1, vect2)),-1))

Get difference in terms of dot product angle between the full covariance␣
↪matrix and truncated covariance matrix via PCA

pca_cov_flatten = pca_cov.values.reshape(-1)
full_cov_flatten = full_cov.values.reshape(-1)

divergence_angle_pca_vs_full = get_dotproduct_angle(pca_cov_flatten,␣
↪full_cov_flatten)

7

print(f'divergence_angle_pca({n_pcs} out of {N_top_syms} PCs used)_vs_full =␣
↪{divergence_angle_pca_vs_full:.3g} radian ({divergence_angle_pca_vs_full/np.
↪pi*180.:.3g} degree)')

divergence_angle_pca(6 out of 30 PCs used)_vs_full = 0.245 radian (14.1 degree)

With just 20% of all the principal components, we can reconstruct the covariance with just 14
degree disimilarity.

Now we extract example major principal components and present is use for the time-series analysis
of returns

[21]: # First, let's see how the per symbol return occurs
fig_dr, axs_dr = plt.subplots(2, 1, figsize=(12,8), sharex=True)
df_daily_logr[['AAPL', 'MSFT', 'TSLA']].plot(ylabel='r_d = ln(r_d /r_d-1)'␣

↪,title='Time-series of daily Log return of stocks', alpha=0.7, ax=axs_dr[0])
df_daily_logr[['AAPL', 'MSFT', 'TSLA']].cumsum(axis=0).plot(ylabel='cum[r_d] =␣

↪sum(r_i)_{i in [0 to d]}' ,title='Time-series of cumulative Log return of␣
↪stocks', alpha=0.7, ax=axs_dr[1])

plt.show()

[22]: fig_cr, axs_cr = plt.subplots(3, 1, figsize=(12,12), sharex=True)
PC_i = X @ V where X is the timeseries matrix and V is the column-wise␣

↪eigenvectors array

8

unlike 'FD-MScFE600-M1-L4', we get principal components (standisation not␣
↪applied) to see real returns

df_daily_logr_principal_components = np.log((np.exp(df_daily_logr) - 1) @␣
↪loadings + 1) # To get sum(w_sym * r_{date,sym}}, we strip off logarithm␣
↪then combine, then put logarithm back

Daily PC portfolios return (a.k.a rel-value)
df_daily_logr_principal_components.iloc[:,:3].plot(ylabel='r_d = ln(r_d /

↪r_d-1)' ,title='Time-series of daily Log return of Principal Component␣
↪portflios', alpha=0.7, ax=axs_cr[0])

axs_cr[0].axhline(y=0, color='black', linestyle='--')

Accumulation of PC portfolios P/L via symbols weighting policy that the last␣
↪Business day's rel-value cheapness/richness tells today's position as we do␣
↪it every day.

(df_daily_logr_principal_components.iloc[1:] * -np.
↪sign(df_daily_logr_principal_components.shift(1)).iloc[1:]).cumsum(axis=0).
↪plot(ylabel='cum[r_d] = sum(r_i)_{i in [0 to d]}' ,title='Time-series of␣
↪cumulative Log return of Principal Component portflios (1BD long-short by␣
↪BD-1 value)', ax=axs_cr[1])

df_daily_logr_principal_components.cumsum(axis=0).plot(ylabel='cum[r_d] =␣
↪sum(r_i)_{i in [0 to d]}' ,title='Time-series of cumulative Log return of␣
↪Principal Component portflios (holding)', ax=axs_cr[2])

plt.show()

9

The cumulative log return timeseris of principal components are particularly interesting in use of
relative value factor search. Every principal components can be understood as a factorised portfolio
of stocks as they are a linear combinations of individual stocks with weights given by eigenvectors.
- Any PCA provides orthogonal weights vector space each of which is orthogonal to every others,
each this factorised portfolio is uncorrelated to others offering us stylised positioning - The daily
return of factorised portolio is mean-reverting by PCA extracts the data points around its principal
axis in covariance space, which tells us whether the portfolio is cheap/rich everyday by checking
the divergence of the portfolio from the principal axis. If the market regime changes, one should
reset the PC model. - However, the design of policy long-short positioning matters on returns and
is not straightforward but requires careful backtest based optimisation as well as validation. For
instance, the cheapness/richness of the last business day as a long/short indicator for today has
higher positive odds to earn positive return but it is not always the case - PC5 gives favourable
returns for the last day value lookup for daily eval strategy whereas the PC2 portfolio goes opposite.
It’s the most naive policy we can take, but we have more options to search on backtesting - change
the weighting horizon from 1BD to a few more, combining more past dates to lookup to generate
trade sign and weights, and etc. - For the holding strategy (long-short at the beginning and keep

10

the position), one can choose the portfolio with upward cumulative returns like PC3. PCA for this
strategy offers a stylised investment as mentioned above, but the direction of cumulative is not
statistically based in this way.

1.7 4.f Compute the SVD

[23]: U, S, Vh = np.linalg.svd(df_daily_logr, full_matrices=True) # S is eigenvalues␣
↪array, V_hermitian is eigen(row)vectors matrix

print(U.shape, S.shape, Vh.shape)

(126, 126) (30,) (30, 30)

Check if the decomposition was successful by reconstructing to back to the data matrix: full rank
SVD should give 0 disimilarity.

[24]: df_daily_logr_svd = pd.DataFrame(U[:,:N_top_syms] @ np.diag(S) @ Vh,␣
↪index=df_daily_logr.index, columns=df_daily_logr.columns)

df_daily_logr_svd.iloc[:3,:3]

[24]: Ticker AAPL ADBE AMAT
Date
2024-07-18 00:00:00+00:00 -0.020749 -0.011144 -0.011058
2024-07-19 00:00:00+00:00 0.000580 -0.010561 -0.034543
2024-07-22 00:00:00+00:00 -0.001561 0.006909 0.060932

[25]: # Get difference in terms of dot product angle between the full covariance␣
↪matrix and truncated covariance matrix via PCA

svd_data_flatten = df_daily_logr_svd.values.reshape(-1)
orig_data_flatten = df_daily_logr.values.reshape(-1)

disimilarity_angle_svd = get_dotproduct_angle(svd_data_flatten,␣
↪orig_data_flatten)

print(f'divergence_angle_pca(full rank)_vs_full = {disimilarity_angle_svd:.3g}␣
↪radian ({disimilarity_angle_svd/np.pi*180.:.3g} degree)')

divergence_angle_pca(full rank)_vs_full = 0 radian (0 degree)

1.8 Summary and further discussion
Index Constituents Extraction In this report, the analysis begins by extracting historical data
for the top Nasdaq-100 stocks to form a representative dataset. Historical price data is converted
into daily returns, a critical transformation for component analysis. Returns play a central role in
this report, as they serve as the foundation for understanding stock movements as well as the source
of searching profitable portfolio strategies based on historical return dynamics. This transformation
normalizes price data, removing scale dependencies and enabling comparisons across assets with
different price levels. By focusing on returns, the analysis highlights volatility and co-movements,
essential for uncovering statistically based tradeable patterns.

11

Returns and Their Importance Returns play a pivotal role in this analysis of stock price
dynamics in terms of volatility and return statistics of single names and cointegrated moves of
symbols, as well as addressing the historical data-based judgement on portfolio management. Price
to return conversion effectively trnasform the stock dynamics from levels to difference where the
stochasticity of the dynamics become much more visible. The transformation is useful to aggregate
index/portfolio performance in later steps. Subsequently, we ‘standardized’ price data for mean-
ingful comparisons across assets, and form uncover the volatility and correlations, which are crucial
for identifying uncorrelated factors that offer several benefits for the portfolio management. The
historical return data analyzed in the report captures the dynamics of past performance, allowing
for a deeper understanding of market trends and the construction of return-based portfolios.

PCA Analysis We employed the Principal Component Analysis (PCA)to identify dominant
market drivers from the covariance matrix of the returns data. Eigenvectors from PCA of returns
data map the data into a set of orthogonal principal components, where the first principal compo-
nent explains the largest share of the total variance. For example, in the dataset analyzed, the first
component captured the broad co-movement of Nasdaq-100 stocks, reflecting market-wide trends.
Subsequent components highlighted more niche factors, such as sectoral trends or idiosyncratic
stock movements. PCA’s ability to isolate these orthogonal patterns makes it a powerful tool for
reducing dimensionality and identifying tradeable factors within financial data.

Stylized Portfolios by Factor We demonstrates how PCA results can be used to construct
stylized portfolios based on specific factors derived from principal components. By weighting port-
folios according to eigenvectors, investors can align their holdings with specific market drivers. For
instance, in this analysis, factor-aligned portfolios were created to capture opportunities in sectoral
or market-wide movements while filtering out unrelated noise. These portfolios provide a mecha-
nism to isolate and exploit specific return dynamics while avoiding overexposure to other factors.
This method is particularly useful for constructing relative value strategies, where returns from
uncorrelated factors are key to optimizing performance.

SVD Analysis The report applies the Singular Value Decomposition (SVD) to complement PCA
in analyzing the structure of the Nasdaq-100 dataset. As studied in M3-L4 of the lecture, PCA
and SVD methods in terms of math are in the same line of the spectral analysis of the stocks’
return timeseries matrix, as the SVD outputs constitute the principal covariance decomposition.
The SVD outputs and PCA outputs via SVD offer perpendicular vector bases that are uncorrelated
to each other, and in portfolio positioning application, it essentially means the factor portfolios by
this analysis isolate return dynamics of the portfolio from other factors. Hence, the management
portfolio can be stylized with a single consistent view on the market, which is useful in a market
with a consistent regime. In this report, singular values quantified the distribution of variance,
reinforcing insights from PCA while also revealing structural nuances in the data.

PCA vs. SVD Here the PCA and SVD processes are applied to highlight different aspects of
the Nasdaq-100 dataset. While PCA identifies eigenvectors and eigenvalues from the covariance
matrix, SVD decomposes the returns matrix directly into singular values and corresponding vec-
tors. As studied in M3-L4 of the lecture, both methods align mathematically through spectral
analysis. PCA is particularly effective in isolating co-movements by explaining variance through
orthogonal components, making it ideal for identifying dominant market-wide or sector-specific
drivers. On the other hand, SVD provided deeper insights into structural patterns, especially when

12

the dataset exhibited asymmetries or irregularities. Together, PCA and SVD complement each
other by isolating unique, orthogonal return drivers and ensuring that portfolio construction is free
from overlapping factor exposures.

Eigenvectors, Eigenvalues, and Singular Values The report highlights how eigenvectors,
eigenvalues, and singular values provide actionable insights into the data. Eigenvectors derived
from PCA represent principal components that map stock movements into uncorrelated factors,
while eigenvalues measure the variance explained by these components. Singular values from SVD
extend this concept, quantifying the relative importance of each component directly from the returns
matrix. For the Nasdaq-100 analysis, eigenvalues and singular values both revealed the dominance
of specific components, providing clarity on which factors to prioritize when constructing portfolios.

[]:

13

	Task 4 by Durei
	Empirical Analysis of ETFs
	4.a Find the 30 largest holdings.
	4.b Fetch at least 6 months of data (~ 120 data points).
	4.c Compute the daily returns.
	4.d Compute the covariance matrix.
	4.e Compute the PCA
	4.f Compute the SVD
	Summary and further discussion

