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Tasks
Problems
Using Monte-Carlo sampling methods, implement below stochastic processes and answer to below questions regarding
the option price and greeks.

General Parameters:

• S0 = 80
• r = 5.5%
• σ = 35%
• Time to maturity = 3 months

Stochastic Volatility Modeler For the Heston model, you can use the following parameters:

• v0 = 3.2%

• κv = 1.85

• θv = 0.045

• Q5. Using the Heston Model and Monte-Carlo simulation, price an ATM European call and an ATM European
put, using a correlation value of −0.30.

• Q6. Using the Heston Model, price an ATM European call and an ATM European put, using a correlation
value of −0.70.

• Q7. Calculate delta and gamma for each of the options in Questions 5 and 6.
Hint: You can numerically approximate this by forcing a change in the variable of interest—i.e., underlying
stock price and delta change—and recalculating the option price.

• Q13. Repeat Questions 5 and 7 for the case of an American call option (no need to price the put). Comment
on the differences you observe from original Questions 5 and 7.

• Q14. Using Heston model data from Question 6, price a European up-and-in call option (CUI) with a barrier
level of 95 and a strike price of 95 as well. This CUI option becomes alive only if the stock price reaches (at
some point before maturity) the barrier level (even if it ends below it). Compare the price obtained to the one
from the simple European call.

Jump Modeler For the Merton model, you can use the following parameters:

• µ = −0.5

• δ = 0.22

https://drive.google.com/file/d/1pc2D-vIYar4g0t8I3d53XD24NB0mB9Kv/view
https://quant-next.com/the-merton-jump-diffusion-model/
https://medium.com/@ptlabadie/pricing-american-options-in-python-8e357221d2a9


• Q8. Using the Merton Model, price an ATM European call and an ATM European put with jump intensity
parameter equal to 0.75.

• Q9. Using the Merton Model, price an ATM European call and an ATM European put with jump intensity
parameter equal to 0.25.

• Q10. Calculate delta and gamma for each of the options in Questions 8 and 9.
Hint: You can use the same trick as in Question 7.

• Q15. Using Merton model data from Question 8, price a European down-and-in put option (PDI) with a
barrier level of 65 and a strike price of 65 as well. This PDI option becomes alive only if the stock price reaches
(at some point before maturity) the barrier level (even if it ends above it). Compare the price obtained to the
one from the simple European put.

Assume no stock dividend throughout this report unless specified otherwise per question.

Heston Modeler
The Heston model is a stochastic volatility process where the variance develops with a mean-reverting process:
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bivariate guassian distribution.

For Q5, Q6, Q17, Q13, and Q14, we base on following configuration by default and change variables as demanded
per question.

HestonParameters

• 'S0': 80.0, 'r': 0.055, 'T': 0.25, 'v0': 0.032, 'kappa': 1.85, 'sigma': 0.35, 'theta': 0.045, 'rho': -0.3,
• SamplingParameters:{'M': 500, 'I': 10000, 'random_seed': 0}

Q5. At-the-money option price of EUR CALL: 3.398 and EUR PUT: 2.276 with ρ = −0.30

Q6. At-the-money option price of EUR CALL: 3.356 and EUR PUT: 2.278 with ρ = −0.70

Q7. Like Q10, we perturb 1% for demo.

side rho delta
call -0.3 0.5
call -0.7 0.49
put -0.3 -0.5
put -0.7 -0.51



Delta barely changes.

side rho gamma
call -0.3 0.053
call -0.7 0.053
put -0.3 0.053
put -0.7 0.053

Change of Gamma is not observed.

Without putting much detail (beyond the level of curriculum of this course), Heston stated [4] that the ρ only
contributes to the skewness of the underlying asset price return but not variance. However, the Black-Scholes formula
- the European option of our interest abides to - shows that the delta only depends on the variance not skewness nor
kurtosis. Hence the delta does not change by the ρ and hence its derivative Gamma as well. The sligh change of
numbers in Delta is small enough such that we can regard it as the numerical precision error at the sample random
paths.

More concretely, this means the model sensitivity to price apart from the Black-Scholes model contribution is
determined by ρ ln(K/S) in short-term [5], which is 0 when the moneyness is 1 (at-the-money). the correlation has
no impact on the call price sensitivity to the underlying price. Hence the first order sensitivity (Delta) and the
second order sensitivty (Gamma) are not related to the correlation in that context.

Also, as in for the Jump model - see Q10 in more details -, the Call-Put parity holds hence the gamma is symmetry
on the option side.

Q13. At-the-money option price of USA CALL: 3.398 and USA PUT: 2.277 with ρ = −0.30. This is expected as
the American call has optimal exercise at expiry and the put barely exploits the early exercise if the moneyness is 1
or less (ATM or OOM).

side rho delta
call -0.3 0.17
call -0.7 0.17
put -0.3 -0.83
put -0.7 -0.83

side rho gamma
call -0.3 0.027
call -0.7 0.028
put -0.3 0.027
put -0.7 0.028

About the Delta and Gamma, rho does not affect as we stated in Q7. What differs from the European option's
property in Q7 is the magnitude of the Delta in which the PUT's Delta becomes much higher reflecting the fact
that the self-exciting volatility increases the chance of early exercise opportunity raising the Delta - or the proxy of
the exercisability - and the call's delta as the result decreases to compensate the sum of absolute to be 1. Reduced
gamma indicates the early exercise property offers the smoother concavity of the option premium as even deeper
OOMs can have more odds to get positive exercise with the American optionality.



• Disclaimer: Pricing the American Option in Monte-Carlo is not a direct aggregation of sample paths' values
down to the valuation timestamp, as the optimal exercise depends on the expected value of the option at
each time. This means the pricer suppose to estimate the distribution of future values based on the sampled
paths. The Least-Square Monte-Carlo method seems to be the most viable way within our understanding of
the course and we benchmarked the open-source implementation such as [6].

Q14. The Up-and-in's payoff is as Payoff = Payoff.European · 1max[Spath]>=barrier for the call option, so it's a touch
to trigger money.

type side S0 K Barrier option_price
european call 80 95 95 0.401
upandin call 80 95 95 0.401
european put 80 95 95 14.1
upandin put 80 95 95 0.289

type side S0 K Barrier option_price
european call 65 95 95 0.0191
upandin call 65 95 95 0.0191
european put 65 95 95 28.7
upandin put 65 95 95 0.00953

The result shows the up-and-in condition does not change the option value when the knock-in condition opens to
the same direction of the positive pay-off of the option. This is obvious in that out-the-money call with barrier at
strike means those you reach to the barrier can only has the non-zero payoff even for the european option case and
vice-versa.

The deep ITM of PUT case is more interesting for the up-and-in case as the underlying price must hit deep out of
strike price then back into in the money zone, which is a subset of non-zero paid-off paths of the European option
case.

Jump Modeler
The functional form of the process is
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For Q8, Q9, Q10, and Q15, we base on following configuration by default and change variables as demanded per
question.

JumpParameters

• 'S0': 80.0, 'r': 0.055, 'T': 0.25, 'lambd': 0.75, 'mu': -0.5, 'delta': 0.22, 'sigma': 0.35,
• SamplingParameters:{'M': 500, 'I': 10000, 'random_seed': 0}

Q8. At-the-money option price of EUR CALL: 3.69 and EUR PUT: 11.1 with λ = 0.75



Q9. At-the-money option price of EUR CALL: 5.18 and EUR PUT: 6.97 with λ = 0.25

Q10. We perturb very big for demo - S0 by 5% for both up/down for delta calculation, and perturb another 5% for
each for gamma calculation

side lambda delta
call 0.25 0.5
call 0.75 0.38
put 0.25 -0.46
put 0.75 -0.51

The delta goes down for both CALL and PUT when the λ increases. This is expected as more frequence jumps at
µj < 0 drops the chance of excersie for CALL and increases for PUT.

side lambda gamma
call 0.25 0.026
call 0.75 0.023
put 0.25 0.026
put 0.75 0.023

The gamma goes down for both CALL and PUT when the λ increases. This aligns with the property of the Jump
model that the underlying price paths distribution has higher kurtosis than the usual GBM - the European option
price based on the Merton Jump model dynamics can be understood as the that of the GBMs combined [3] - hence
the squared sensitivity to the discounted payoff or the curvature of the option price becomes smoother by bigger
lambda. Lastly, the symmetry of the gamma on CALL/PUT holds with the Jump process dynamics, assuring the
arbitrage-free call-put parity property of the European option where

ΓC − ΓP := ∂2(C − P )
∂S2 = ∂2(S − Ke−rT )

∂S2 = 0

.

Q15. The payoff structure of down-and-in option is as Payoff = Payoff.European · 1m[Spath]>=barrier, so it's a
conditioned option with a low-bound to touch.

type side S0 K Barrier option_price
european put 65 65 65 9.029
downandin put 65 65 65 9.029

As one can expect, the PUT option price for the european and the down-and-in are the same when the strike pricer
(K) is equal to the barrier price (Barrier), as whatever has non-zero payoff should've also touched the knocked-in.

CALL option case is more interesting as the paths positive payoff (price at expiry above the strike) may never
knocked-in below the barrier price, hence the down-and-in price becomes lower than that of the european's. The
knock-down-and-in is a tough condition for deep in-the-money option hence the option price of such Down-and-in is



significantly lower than that of the European option's. In contrast, the exercis-ability of the at-the-money option
with sufficient amount of time to expire is not compromised by the condition hence the option price between the two
option types are almost equal.

type side S0 K Barrier option_price
european call 95 65 65 23.13
downandin call 95 65 65 0.1297

type side S0 K Barrier option_price
european call 80 65 65 11
downandin call 80 65 65 0.58

type side S0 K Barrier option_price
european call 65 65 65 2.999
downandin call 65 65 65 2.999
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